Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations

نویسندگان

  • Franck Boyer
  • Jérôme Le Rousseau
  • FRANCK BOYER
چکیده

In arbitrary dimension, in the discrete setting of finite-differences we prove a Carleman estimate for a semi-discrete parabolic operator, in which the large parameter is connected to the mesh size. This estimate is applied for the derivation of a (relaxed) observability estimate, that yield some controlability results for semi-linear semi-discrete parabilic equations. Sub-linear and super-linear cases are considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and application to controllability

In the discrete setting of one-dimensional finite-differences we prove a Carleman estimate for a semi-discretization of the parabolic operator ∂t − ∂x(c∂x) where the diffusion coefficient c has a jump. As a consequence of this Carleman estimate, we deduce consistent nullcontrollability results for classes of semi-linear parabolic equations.

متن کامل

A new positive definite semi-discrete mixed finite element solution for parabolic equations

In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations.  Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...

متن کامل

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

A. Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are pre...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Uniform Controllability of Discrete Partial Dierential Equations Thèse Dirigée Par : Rapporteurs : I Am Grateful to My Close Friends Dung

In this thesis, we study uniform controllability properties of semi-discrete approximations for parabolic systems. In a first part, we address the minimization of the Lq-norm (q > 2) of semidiscrete controls for parabolic equation. As shown in [LT06], under the main approximation assumptions that the discretized semigroup is uniformly analytic and that the degree of unboundedness of control ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017